Quantitative Analysis ---- Practice Review Quiz

(always give answers to correct number of significant figures)

1. An object has mass 14.45 g and volume 10.0 cm³. Calculate the object's density.

 $D = mass/volume = 14.45 g/10.0 cm^3 = 1.45 g/cm^3$

- 2. Name the following compounds
- a. FeO iron(II) oxide
 b. Mg₃N₂ magnesium nitride
 c. CCl₄ carbon tetrachloride
 d. CoPO₄ cobalt phosphate
- 3. Calculate the number of moles of AgNO₃ in 15.0 g of AgNO₃

Moles = mass in grams/molar mass Molar mass $AgNO_3 = 169.87$ g/mol (use periodic table) Moles = 15.0 g /169.87 g/mol = 0.0883 g

4. Calculate the mass in grams of 2.00 moles of N_2O_3

Moles = mass in grams/molar mass Rearranging: mass in grams = moles x molar mass Molar mass N₂O₃ = 76.01 g/mol Mass in grams = 2.00 mol x 76.01 g/mol = 152 g 5. Calculate the mass of barium sulfate that will form when 10.0 g of barium chloride reacts completely according to the following reaction:

```
BaCl_2(aq) + Na_2SO_4(aq) \rightarrow 2 NaCl(aq) + BaSO_4(s)
```

Convert 10.0 g BaCl₂ to moles (as in Q3) Molar mass BaCl₂ = 208.23 g/mol Moles BaCl₂ = 10 g/208.23 g/mol = 0.0480 mol BaCl₂ Since 1 mole BaCl₂ yields 1 mole BaSO₄ from equation: Moles BaSO₄ formed = 0.0480 mol Convert moles BaSO₄ to grams (as in Q4) Molar mass BaSO₄ = 233.38 g/mol Mass BaSO₄ formed = 0.048 mol x 233.38 g/mol = 11.2 g BaSO₄

6. 15.0 g of Fe(NO₃)₃ reacts with 15.0 g KOH according to the following equation:

 $Fe(NO_3)_3$ (aq) + 3 KOH (aq) \rightarrow $Fe(OH)_3$ (s) + 3 KNO₃ (aq)

a. Calculate the limiting reactant

Convert masses to moles as in above questions.

Molar masses: $Fe(NO_3)_3 = 241.86 \text{ g/mol}$ KOH = 56.11 g/mol

Moles $Fe(NO_3)_3 = 0.0620$ mol Moles KOH = 0.257 mol

So which is limiting (will be all used up) and which is in excess?

From equations, reactant ratio is 1:3

This means 0.0620 mol of $Fe(NO_3)_3$ would require 3 x 0.0620 mol (= 0.186 mol) KOH to react completely

Since there are 0.257 mol of KOH (in the 15 g), the KOH is in excess and all the $Fe(NO_3)_3$ will be used up – it is the limiting reactant since it will determine the mass of products that form, not the KOH

b. Calculate the theoretical yield of Fe(OH)₃

Use the 15 g (0.0620 mol) of $Fe(NO_3)_3$ (the limiting reactant) to calculate the mass of $Fe(OH)_3$ that forms (which is the theoretical yield)

Mole ratio is 1:1

That is, 0.0620 mol of Fe(NO₃)₃ will form 0.0620 mol of Fe(OH)₃

Convert 0.0620 mol of Fe(OH)₃ to mass (as in above questions)

Molar mass of $Fe(OH)_3 = 106.866 \text{ g/mol}$

Recall: mass in grams = moles x molar mass

Mass of $Fe(OH)_3 = 0.062 \text{ mol } x \ 106.866 \text{ g/mol} = 6.66 \text{ g } Fe(OH)_3$

7. Calculate the molarity of 31.35 g of NaCl in 1.50 L of aqueous solution Molarity = moles of solute (NaCl)/volume of solution Convert 31.35 g NaCl to mol as in above questions - gives 0.536 mol NaCl Molarity = 0.536 mol/1.50 L = 0.357 M NaCl 8. Calculate the final concentration of a HCl solution prepared by diluting 100.0 mL of 12.1 M HCl to 250.0 mL.

For dilutions use $M_1V_1 = M_2V_2$

Where M₁ and V₁ refer to initial molarity and volumes (the more concentrated solution)

and M_2 and V_2 refer to final molarity and volumes (the diluted solution)

 $M_1 = 12.1 M$

 $V_1 = 100 \text{ mL}$

 $M_2 = unknown$

 $V_2 = 250 \; mL$

Therefore, $M_2 = 4.84 \text{ M}$

(You can leave volumes in mL since those units will cancel)